Physiological responses of the scleractinian coral Pocillopora damicornis to bacterial stress from Vibrio coralliilyticus.
نویسندگان
چکیده
As the effects of climate change have become increasingly visible over the past three decades, coral reefs have suffered from a number of natural and anthropogenic disturbances that have caused a critical decline in coral populations. Among these disturbances are coral diseases, which have appeared with increasing frequency and severity, often in correlation with increases in water temperature. Although the crucial role played by Vibrio species in coral disease has been widely documented, the scientific community does not yet fully understand the infection process of Vibrio or its impact on coral physiology and immunology. Here, we investigated the physiological and transcriptomic responses of a major reef-building coral, Pocillopora damicornis, when exposed to a specific pathogen (Vibrio coralliilyticus) under virulent (increasing water temperature) and non-virulent (constant low temperature) conditions. The infection process was examined by electron microscopy and quantitative reverse-transcription PCR, and coral health was monitored by visual observations and measurements of zooxanthellar density. The results obtained suggest that coral tissue invasion occurs upon increasing water temperature only. Transcriptomic variations were investigated using a suppression-subtractive-hybridization approach, and the expression levels of six candidate immune-related genes were examined during bacterial exposure. These genes correspond to three lectin-like molecules putatively involved in the recognition of pathogens, two metal-binding proteins putatively involved in antibacterial response and one cystein protease inhibitor. The transcription patterns of these selected genes provide new insights into the responses of coral colonies to virulent versus non-virulent bacteria.
منابع مشابه
Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis
Rising seawater temperature associated with global climate change is a significant threat to coral health and is linked to increasing coral disease and pathogen-related bleaching events. We performed heat stress experiments with the coral Pocillopora damicornis, where temperature was increased to 31°C, consistent with the 2-3°C predicted increase in summer sea surface maxima. 16S rRNA amplicon ...
متن کاملThermal Stress Triggers Broad Pocillopora damicornis Transcriptomic Remodeling, while Vibrio coralliilyticus Infection Induces a More Targeted Immuno-Suppression Response
Global change and its associated temperature increase has directly or indirectly changed the distributions of hosts and pathogens, and has affected host immunity, pathogen virulence and growth rates. This has resulted in increased disease in natural plant and animal populations worldwide, including scleractinian corals. While the effects of temperature increase on immunity and pathogen virulenc...
متن کاملVibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis.
Vibrio sp. YB1T (=ATCC BAA-450T =LMG 20984T), the aetiological agent of tissue lysis of the coral Pocillopora damicornis, was characterized as a novel Vibrio species on the basis of 16S rDNA sequence, DNA-DNA hybridization data (G + C content is 45.6 mol%), AFLP and GTG5-PCR genomic fingerprinting patterns and phenotypic properties, including the cellular fatty acid profile. The predominant fat...
متن کاملInnate immune responses of a scleractinian coral to vibriosis.
Scleractinian corals are the most basal eumetazoan taxon and provide the biological and physical framework for coral reefs, which are among the most diverse of all ecosystems. Over the past three decades and coincident with climate change, these phototrophic symbiotic organisms have been subject to increasingly frequent and severe diseases, which are now geographically widespread and a major th...
متن کاملResponses of the Metabolism of the Larvae of Pocillopora damicornis to Ocean Acidification and Warming
Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 214 Pt 9 شماره
صفحات -
تاریخ انتشار 2011